Lanzado el telescopio espacial europeo Euclid para estudiar la energía y materia oscuras
¿De qué está hecho el Universo? ¿Cuál será su futuro? Pocas preguntas hay más trascendentales que estas, pero tenemos la inmensa suerte de vivir en una época de la historia de la humanidad en la que podemos dar respuesta a las mismas. Sin embargo, todavía hay muchas cosas sobre la estructura y evolución del Universo a gran escala que desconocemos, especialmente con respecto a la materia y energía oscuras. Y para ayudarnos a resolver estos misterios ha sido lanzado el telescopio espacial Euclid de la Agencia Espacial Europea (ESA), una de las misiones más fascinantes de los últimos años. El 1 de julio de 2023 a las 15:12 UTC despegó un Falcon 9 Block 5 desde la rampa SLC-40 de la base de la Fuerza Espacial en Cabo Cañaveral de Florida (CCSFS) con el telescopio espacial Euclid.
Euclid —Euclides en español— es un telescopio espacial con un espejo primario de 1,2 metros de diámetro que observará el Universo para estudiar la materia y energía oscuras. Su objetivo es levantar un mapa tridimensional de la posición y masa de las galaxias para así determinar la composición precisa del cosmos, es decir, cuál es la proporción de energía oscura y materia oscuras. A partir de estos datos podremos conocer con mayor precisión el destino del Universo y entender mejor su origen. Euclid no es un telescopio espacial destinado a observar objetos concretos, sino que su misión es levantar un mapa de casi un tercio de todo el cielo (36% de la bóveda celeste, unos 15000 grados cuadrados) para cartografiar la posición de 35 millones de galaxias (!) midiendo su corrimiento al rojo. Asimismo, Euclid analizará las imágenes de cúmulos de galaxias lejanos en busca de la distorsión de sus formas por efecto de lentes gravitacionales débiles, un efecto causado por la curvatura del espacio-tiempo debida a la masa de galaxias más cercanas en la línea de visión.
Este efecto de lentes gravitacionales débiles, una consecuencia de la Relatividad General de Einstein, depende de la masa de estas galaxias más cercanas, por lo que Euclid será capaz de hacer un mapa tridimensional no solo de la posición de las galaxias, sino de la distribución de la masa a gran escala. Este mapa servirá a su vez para calcular la proporción de materia oscura y materia bariónica (materia «normal») presente en estas galaxias. Con respecto a la energía oscura, Euclid intentará medir los efectos de las oscilaciones acústicas bariónicas (BAO) en la distribución de galaxias lejanas con el fin de compararlos con los observados en el fondo cósmico de microondas por misiones anteriores como Planck. De esta forma se podrán medir con precisión los efectos de la energía oscura en la aceleración del Universo y determinar si su valor ha sido constante desde el Big Bang —o sea, si es la constante cosmológica con valor w = -1— o ha variado con el tiempo.
Euclid es una nave de unos 2200 kg (1921 kg en seco) construida por Thales Alenia Space como contratista principal para la ESA. Tiene unas dimensiones de 4,5 x 3,74 metros y está dividida en dos módulos, el módulo de servicio SVM (Service Module) —con los sistemas de comunicaciones, aviónica, propulsores, etc.— y el módulo PLM (Payload Module) con la óptica del telescopio y los dos instrumentos científicos. Para controlar su posición, Euclid incluye diez pares de propulsores a base de hidrazina de 20 newton de empuje y seis pares de micropropulsores de nitrógeno gaseoso con un empuje de 1 a 1000 micronewton que garantizan una estabilidad en el apuntado de 75 milisegundos de arco durante 700 segundos (estos propulsores están basados en los empleados en la misión Gaia). Para conocer su posición, Euclid lleva una unidad de medida inercial (IMU) con giróscopos y 4 acelerómetros, así como 4 sensores solares y 3 sensores estelares. Cuatro volantes de reacción moverán la nave siempre que sea posible para llevar a cabo las sesiones de observación. Los propulsores de hidrazina se usarán para las maniobras de corrección de trayectoria.
Los paneles solares están unidos al módulo SVM y forman el elemento PVA (PhotoVoltaic Assembly), que también sirve como parasol para mantener las bajas temperaturas necesarias para el buen funcionamiento de los instrumentos. Los paneles solares de arseniuro de galio cubren una superficie de 11 metros cuadrados y generarán entre 1800 y 2500 vatios. Puesto que Euclid solo puede alcanzar un ángulo de 121º con el Sol con respecto al eje del telescopio, el ángulo de los paneles con el Sol estará entre 0º y 33º. Los paneles alimentan una batería de celdas VES16 de ion litio desarrolladas por la empresa francesa Saft.
Euclid estudiará el cosmos desde una órbita de halo de 90 000 x 100 000 kilómetros alrededor del punto de Lagrange L2 del sistema Tierra-Sol (ESL-2), a 1,5 millones de kilómetros de nuestro planeta, una zona en la que se encuentran otros observatorios astronómicos como el James Webb de la NASA. El punto L2 es ideal para mantener un entorno térmico estable y garantizar largas sesiones de comunicaciones. La misión primaria debe durar seis años. Euclid tardará un mes aproximadamente en llegar a L2 y para ello necesitará efectuar una maniobra de corrección de la trayectoria y dos para colocarse en la órbita de halo. Luego realizará una maniobra de corrección de la órbita una vez al mes, aproximadamente (las órbitas de halo alrededor de los puntos L1 y L2 son intrínsecamente inestables). Dos semanas después del lanzamiento, Euclid se habrá enfriado a la temperatura adecuada para que puedan funcionar sus instrumentos. Euclid tardará un mes en llegar a L2, pero necesitará unos dos meses adicionales de calibrado de instrumentos y puesta a punto antes de empezar con las operaciones científicas.
La óptica de Euclid consiste en un telescopio de tipo Korsch de tres espejos con un primario de 1,2 metros de diámetro. Airbus Defence and Space ha estado a cargo de la construcción del telescopio. El telescopio estará enfriado a 125 kelvin de forma pasiva. El diseño Korsch permite que la óptica sea compacta y estable desde el punto de vista térmico al mismo tiempo que se minimiza la dispersión de luz dentro del tubo.
Cuenta con dos instrumentos principales, la cámara VIS (Visible Imager) y el espectrómetro NISP (Near Infrared Spectrum Photometer). VIS opera en el visible y NISP en el infrarrojo cercano. Inicialmente ambos instrumentos se propusieron para dos misiones diferentes, pero se unieron tras incluir una placa dicroica a la óptica capaz de dejar pasar la luz infrarroja y reflejar la visible. VIS tiene un campo de visión de 0,557º cuadrados, lo que significa que en apenas dos días de observaciones habrá cubierto más porcentaje de la bóveda celeste que el Hubble desde que se lanzó. VIS opera en el rango de 550 a 920 nanómetros y tiene una resolución de 0,1-0,2 segundos de arco. Dispone de 36 sensores CCD de 600 megapíxeles con un área de 877 centímetros cuadrados. Generará unos 520 Gbits de datos al día. VIS es una cámara pancromática, esto es, sus imágenes serán en ‘blanco y negro’.
Por su parte, NISP es un instrumento de 158 kg capaz de realizar fotometría y espectroscopía en el infrarrojo cercano (920 a 2000 nanómetros) y una resolución de 0,3 segundos de arco, por lo que podrá observar galaxias más lejanas. Su campo de visión es de 0,55º cuadrados y dispone de tres filtros para fotometría y de dos ‘grismas’ para espectroscopía de baja resolución (R = 380). NISP tiene 16 sensores de telururo de mercurio y cadmio (HgCdTe) de 65 megapíxel. Los filtros de NISP están situados en la rueda FWA (Filter Wheel Assembly), un elemento construido por el Instituto de Ciencias del Espacio del CSIC en España (ICE-CSIC) en colaboración con el IEEC (Institut d’Estudis Espacials de Catalunya) y el IFAE (Institut de Física d’Altes Energies). Por otro lado, La Universidad Politécnica de Cartagena (UPCT) y el Instituto de Astrofísica de Canarias (IAC) han sido responsables del diseño, construcción y validación de la electrónica de control del Instrumento NISP. VIS y NISP están refrigerados de forma pasiva hasta los 150 y 95 kelvin, respectivamente (la menor temperatura de NISP es necesaria para observar en el infrarrojo).
Ambos instrumentos observarán doce mil millones de galaxias (!!) en el estudio WES (Wide Extragalactic Survey) que cubrirá un tercio del cielo. De todas estas, se obtendrá información detallada de la forma de 1500 millones de galaxias, y también se calculará su distancia de forma menos precisa mediante la medición de corrimiento al rojo por fotometría en visible e infrarrojo cercano. De este subconjunto, Euclid podrá medir el corrimiento al rojo con precisión mediante espectroscopia de unos 35 millones de galaxias, lo que permitirá determinar su posición con exactitud. Además de realizar un mapa del 36% del cielo, la misión observará en profundidad dos zonas de 10º a 20º cuadrados situadas cerca de cada polo galáctico con el objetivo de llevar a cabo observaciones de precisión de las formas de 1,5 millones de galaxias y el corrimiento al rojo de 150 000. Estas observaciones de campo profundo se denominan, lógicamente, DS (Deep Surveys). Euclid evitará el ecuador galáctico y las nubes de Magallanes porque se trata de zonas con demasiadas estrellas, polvo y gas de nuestra galaxia que interferirían con las observaciones. Tampoco podrá observar el plano de la eclíptica por culpa de la presencia de la luz zodiacal.
Euclid analizará la energía oscura mediante el estudio de la historia de la expansión del Universo desde que tenía unos 3000 millones de años hasta hace unos tres mil millones —actualmente tiene 13800 millones de años— (o sea, usando galaxias con corrimientos al rojo, z, de entre 0,7 y 2). Con estos datos se intentará determinar si la energía oscura es constante (w = -1) o dinámica, un resultado que tendría importantes implicaciones para el futuro del Universo y nos ayudaría a determinar la naturaleza de la energía oscura. Con respecto a la materia oscura, Euclid podrá detectar su presencia en los halos galácticos de más de cien millones de masas solares y será capaz de estudiar cómo se distribuye esta misteriosa sustancia en los halos. Estos datos servirán de paso para medir la suma de las masas de los tipos de neutrinos y determinar cuántas familias de neutrinos existen.
Se espera que al final de sus seis años de vida útil Euclid haya generado unos 100 petabytes de datos (!!!). Las comunicaciones con Euclid se realizarán en sesiones de 4 horas al día a través de la las antenas de espacio profundo de la ESA en España y Australia, que enviarán unos 850 Gbit de datos al día al centro de operaciones de la misión, el ESOC de Darmstadt (Alemania), y de ahí al centro de operaciones científicas, el ESAC de España. Euclid fue seleccionada en 2012 como la segunda misión de tipo medio (M2) de la ESA (Solar Orbiter fue la M1 y PLATO será la M3). Se decidió bautizarla con el nombre de Euclides, el famoso matemático griego padre de la geometría, porque la misión nos aclarará cuál es la geometría del Universo a gran escala. Un total de 80 empresas europeas participan en Euclid, 9 de ellas españolas: Airbus España, Crisa, Alter Technology, Deimos Space, Naviar, Sener, GTD y Thales Alenia Space España. Euclid ha costado unos 1400 millones de euros.
Euclid complementará a telescopios terrestres de campo amplio como el Vera Rubin (LSST) y al futuro telescopio espacial Nancy Grace Roman (WFIRST). El telescopio Roman usará un espejo principal de 2,4 metros, similar al del Hubble y más grande que el de Euclid, pero solo observará una zona del cielo de 2000 grados cuadrados. A cambio, Roman también usará observaciones de supernovas de Tipo Ia para medir la expansión del Universo y la energía oscura. Con respecto a los telescopios terrestes, los investgadores de Euclid deberán combinar las imágenes a color de estos observatorios con las imágenes en blanco y negro obtenidas por Euclid para medir la distorsión de las galaxias debido al efecto de lente débil. Los primeros resultados de Euclid se publicarán en 2025, aunque habrá que esperar a 2030 para disponer de los resultados tras cumplir la misión primaria de seis años.
Originalmente estaba previsto lazar Euclid en mayo de 2021 mediante un cohete ruso Soyuz desde la Guayana Francesa, pero la fecha se retrasó a 2022. Lamentablemente, la invasión de Ucrania por parte de Rusia y la posterior suspensión de relaciones a todos los niveles entre la ESA y este país obligaron a retrasar una vez más el lanzamiento y buscar un vehículo alternativo. El Ariane 5 no era una opción debido a que sus últimas misiones ya estaban reservadas y el Ariane 6 no estará listo, con suerte, hasta mediados de 2024. Como resultado, la ESA se vio obligada a recurrir a un proveedor no europeo y se eligió el Falcon 9 de SpaceX por su precio y disponibilidad de fechas. Ahora, Euclid ya está rumbo a L2. ¿Qué sorpresas nos descubrirá este maravilloso instrumento?